World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

REFINED BEAM THEORIES BASED ON A UNIFIED FORMULATION

    https://doi.org/10.1142/S1758825110000500Cited by:256 (Source: Crossref)

    This paper proposes several axiomatic refined theories for the linear static analysis of beams made of isotropic materials. A hierarchical scheme is obtained by extending plates and shells Carrera's Unified Formulation (CUF) to beam structures. An N-order approximation via Mac Laurin's polynomials is assumed on the cross-section for the displacement unknown variables. N is a free parameter of the formulation. Classical beam theories, such as Euler-Bernoulli's and Timoshenko's, are obtained as particular cases. According to CUF, the governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the approximation order. The governing differential equations are solved via the Navier type, closed form solution. Rectangular and I-shaped cross-sections are accounted for. Beams undergo bending and torsional loadings. Several values of the span-to-height ratio are considered. Slender as well as deep beams are analysed. Comparisons with reference solutions and three-dimensional FEM models are given. The numerical investigation has shown that the proposed unified formulation yields the complete three-dimensional displacement and stress fields for each cross-section as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam and loading conditions.