World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PIPELINE INSPECTION USING A TORSIONAL GUIDED-WAVES INSPECTION SYSTEM. PART 2: DEFECT SIZING BY THE WAVE FINITE ELEMENT METHOD

    https://doi.org/10.1142/S1758825114500355Cited by:16 (Source: Crossref)

    This paper represents the second part of the work that considers the identification and sizing of machined defects in a pipeline. This study deals with the torsional-mode reflection from defects and structural singularities in an industrial pipeline in order to perform the defect sizing. The wave finite element method (WFEM) is used to construct a numerical database of reflection coefficients from rectangular defects by varying thickness, axial and circumferential extents. Calculation is made depending on the frequency. The approximation of defects' sizes is carried out by sweeping the numerical database to find the suitable combination of dimensions for a given defect. The axial and circumferential extents are evaluated by fixed intervals for each possible thickness. Reflections from structural singularities (elbows, concrete blocks, clamps and welds) are also treated by comparing reflection coefficients obtained by the WFEM to those evaluated experimentally. Results show a good agreement for most of the structural singularities but not for the others.