World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Hybrid Method for Transverse Vibration of Multi-Span Functionally Graded Material Pipes Conveying Fluid with Various Volume Fraction Laws

    https://doi.org/10.1142/S1758825117500958Cited by:11 (Source: Crossref)

    Both functionally graded materials (FGMs) and fluid-conveying pipes have wide applications in engineering communities. In this paper, the transverse vibration and stability of multi-span viscoelastic FGM pipes conveying fluid are investigated. Volume fraction laws including power law, sigmoid law and exponential law are introduced to describe the variations of material properties in FGM pipes. A hybrid method which combines reverberation-ray matrix method and wave propagation method is developed to calculate the natural frequencies, and the results determined by present method are compared with the existing results in literature. Then, a comparative study is performed to investigate the effects of fluid velocity, volume fraction laws and internal damping on transverse vibration and stability of the FGM pipes conveying fluid. The results demonstrate that the present method has high precision in dynamic analysis of multi-span pipes conveying fluid. It is also found that natural frequencies of FGM pipes can be adjusted by devising the volume fractions laws. This particular feature can be tailored to fulfill the special applications in engineering.