World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Stress Wave Propagation Analysis in One-Dimensional Micropolar Rods with Variable Cross-Section Using Micropolar Wave Finite Element Method

    https://doi.org/10.1142/S1758825118500394Cited by:21 (Source: Crossref)

    The wave finite element method (WFEM) is developed to simulate the wave propagation in one-dimensional problem of nonhomogeneous linear micropolar rod of variable cross-section. For this purpose, two kinds of waves with fast and slow velocities are detected. For micropolar medium, an additional rotational degree of freedom (DOF) is considered besides the classical elasticity’s DOF. The proposed method is implemented to solve the wave propagation, reflection and transmission of two distinct waves and impact problems in micropolar rods with different layers. Along with new solutions, results of the micropolar wave finite element method (MWFEM) are compared with some numerical and/or analytical solutions available in the literature, which indicate excellent agreements between the results.