World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Static and Dynamic Analyses of Nanocomposite Plates in Mechanical and Aerodynamic Loading

    https://doi.org/10.1142/S1758825120500349Cited by:7 (Source: Crossref)

    In this paper, flutter and divergence instabilities of functionally graded porous plate strip reinforced with graphene nanoplatelets in supersonic flow and subjected to an axial loading are studied. The graphene nanoplatelets are distributed in the matrix either uniformly or non-uniformly along the thickness direction. Four graphene nanoplatelets distribution patterns namely, Patterns A through D are considered. Based on the modified Halpin–Tsai micromechanics model and the rule of mixture, the effective material properties of functionally graded plate strip reinforced with graphene nanoplatelets are obtained. The aerodynamic pressure is considered in accordance with the quasi-steady supersonic piston theory. To transform the governing equations of motion to a general eigenvalue problem, the Galerkin method is employed. The flutter aerodynamic pressure and stability boundaries are determined by solving standard complex eigenvalue problem. The effects of graphene nanoplatelets distributions, graphene nanoplatelets weight fraction, geometry of graphene nanoplatelets, porosity coefficient and porosity distributions on the flutter and divergence instabilities of the system are studied. The results show that the plate strip with symmetric distribution pattern (stiffness in the surface areas) and GPLs pattern A predict the highest stable area. The flutter and divergence regions decrease as the porosity coefficient increases. Besides, the critical aerodynamic loads increase by adding a small amount of GPL to the matrix.