World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Strain-Induced Electromagnetic Transmission Modulation via a Reconfigurable Kirigami Metasurface

    https://doi.org/10.1142/S1758825124410047Cited by:0 (Source: Crossref)
    This article is part of the issue:

    Tunable three-dimensional (3D) electromagnetic (EM) metasurfaces are critical for dynamic modulation of EM responses but their construction and tuning mechanism are still complex. Here, we report a simple yet effective 3D reconfigurable EM metasurface, which was obtained from a planar kirigami polyimide substrate printed with periodically arranged copper split-ring resonator. Under mechanical stretch, the two-dimensional (2D) planar metasurface can be uniformly deformed into a 3D state, which is effective for tuning its EM transmission characteristic. By combining mechanics and EM simulations as well as experimental measurements, we revealed the deformation mode and active EM transmission modulation capability of the metasurface. It is shown that at the initial state, the planar kirigami metasurface exhibits ideal frequency selective transmission to transverse electric (TE) wave but allows for complete transmission for transverse magnetic (TM) wave. As the applied strain increases from 0% to 20%, the transmission was adjusted from −17.74dB to −9.74dB for TE wave but merely from 0dB to −3.25dB for TM wave. Meanwhile, the resonant frequency experienced a visible shift for both TE and TM waves. Finally, the equivalent circuit analysis and simulated surface current density were conducted to reveal the tuning mechanism of the proposed metasurface.