ON THE CONVERGENCE STRUCTURE OF L-TOPOLOGICAL SPACES AND THE CONTINUITY IN L-TOPOLOGICAL SPACES
Abstract
A general and a comprehensive theory of fuzzy topological spaces on the basis of a fixed quadruple M = (L, ≤, ⊗, *), where (L, ≤), ⊗ and *, respectively, denote a complete lattice and binary operations on L satisfying some further axioms, was introduced by Höhle and Šostak. L-topological spaces, convergence structure of L-topological spaces and L-continuous functions form an important part of their work. The present paper continues the study in this area, and provides new results on the convergence structure of L-topological spaces and the continuity in L-topological spaces.