World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Compositional Rule of Inference with a Complex Rule Using Lukasiewicz t-Norm

    https://doi.org/10.1142/S1793005722500260Cited by:0 (Source: Crossref)

    Inference systems are intelligent software performed generally to help people take appropriate decisions and solve problems in specific domains. Fuzzy inference systems are a kind of these systems that are based on fuzzy knowledge. To handle the fuzziness in the inference, the compositional rule of inference is used, which has two parameters: a t-norm and an implication operator. However, most of the combinations of t-norm/implication do not give an adequate inference result that coincides with human intuitions. This was the motivation for several works to study these combinations and to identify those that are compatible, in order to guarantee a performance close to that of humans. We are interested in this paper to a more general form of rules, which is complex rules, whose premise is a conjunction of propositions. To obtain the consequence in a fuzzy inference system using the compositional rule of inference with a complex rule, we study, in this work, Lukasiewicz t-norm which was not investigated before in this context. We combine it with known implications, and we verify the satisfaction of some criteria that model human intuitions.