World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LOCAL MONODROMY OF p-ADIC DIFFERENTIAL EQUATIONS: AN OVERVIEW

    https://doi.org/10.1142/S179304210500008XCited by:15 (Source: Crossref)

    This primarily expository article collects together some facts from the literature about the monodromy of differential equations on a p-adic (rigid analytic) annulus, though often with simpler proofs. These include Matsuda's classification of quasi-unipotent ∇-modules, the Christol–Mebkhout construction of the ramification filtration, and the Christol–Dwork Frobenius antecedent theorem. We also briefly discuss the p-adic local monodromy theorem without proof.

    AMSC: 14F30, 14F40