World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NON-COMMUTATIVE p-ADIC L-FUNCTIONS FOR SUPERSINGULAR PRIMES

    https://doi.org/10.1142/S1793042112501047Cited by:2 (Source: Crossref)

    Let E/ℚ be an elliptic curve with good supersingular reduction at p with ap(E) = 0. We give a conjecture on the existence of analytic plus and minus p-adic L-functions of E over the ℤp-cyclotomic extension of a finite Galois extension of ℚ where p is unramified. Under some technical conditions, we adopt the method of Bouganis and Venjakob for p-ordinary CM elliptic curves to construct such functions for a particular non-abelian extension.

    AMSC: 11R23, 11F67
    Remember to check out the Most Cited Articles!

    Check out new Number Theory books in our Mathematics 2021 catalogue