Research PapersNo Access
A congruence involving harmonic sums modulo pαqβpαqβ
https://doi.org/10.1142/S1793042117500580Cited by:3 (Source: Crossref)
Abstract
In 2014, Wang and Cai established the following harmonic congruence for any odd prime p and positive integer r,
Z(pr)≡−2pr−1Bp−3(modpr),
Z(pαqβ)≡2(2−q)(1−1q3)pα−1qβ−1Bp−3(modpα)
Z(pαqβ)≡0(modpαqβ).
Z(n)≡∏q|nq≠p(1−2q)(1−1q3)(−2np)Bp−3(modpα).
AMSC: 11A07, 11A41