World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DYNAMIC INSTABILITY OF COMPOSITE SKEW PLATES USING BOUNDARY CHARACTERISTIC ORTHOGONAL POLYNOMIALS

    https://doi.org/10.1142/S1758825114500781Cited by:11 (Source: Crossref)

    Dynamic instability analysis of laminated composite skew plate for different skew angles subjected to different type of linearly varying in-plane loadings is investigated. The analysis also includes the instability of skew plate under uniform bi-axial in-plane loading. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is mapped into a square plate over which a set of orthonormal polynomials satisfying the essential boundary conditions is generated by Gram–Schmidt orthogonalization process. Different boundary conditions of skew plate have been correctly incorporated by using Rayleigh–Ritz method in conjunction with Boundary Characteristics Orthonormal Polynomials (BCOPs). The boundaries of dynamic instability regions are traced by the periodic solution of governing differential equations (Mathieu type equations) with period T and 2T. The width of instability region for uniform loading is higher than various types of linearly varying loadings (keeping the same peak intensity). Effect of various parameters like skew angle, aspect ratio, span-to-thickness ratio, boundary conditions and static load factor on dynamic instability has been investigated.