World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

APPLICATION OF NANOSCALE ZERO-VALENT IRON FOR GROUNDWATER REMEDIATION: LABORATORY AND PILOT EXPERIMENTS

    https://doi.org/10.1142/S1793292008001118Cited by:9 (Source: Crossref)

    It is known that the reductive effects of zero-valent iron (Fe0) and the sorptive capability of iron and its oxides can be used for both the dehalogenation of chlorinated hydrocarbons (CHC), especially of chlorinated ethenes (PCE → TCE → DCE → VC → ethene, ethane), and the removing of heavy metals from groundwater by turning them into a less-soluble form through changes of their oxidation state, or by adsorption. These consequences are being exploited in the construction of iron filling permeable reactive barriers for a longer time.1 The advantages of nanoscale zero-valent iron (nanoFe0) over the macroscopic one consist not only in the better reactivity implicit in their greater specific surface area but also in their mobility in rock environment.2,3 Numerous laboratory experiments, especially the batch-agitated experiments, with samples from seven various contaminated localities in Europe have been carried out with the aim to discover the measurement of the reductive effect of the nanoFe0 on selected contaminants. It was found that the nanoFe0 can be reliably usable as a reductive reactant for in-situ chemical decontamination of sites polluted by chlorinated ethenes (CEs), or hexa-valent chromium (CrVI). The rate of reductive reaction and the optimal concentrations for the real remediation action were determined. On the basis of these laboratory experiments, the methods for pilot application of nanoFe0 have been specified. Subsequently the pilot experiments were accomplished in surveyed localities.