World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LOCAL DOPING AND OPTIMAL ANNEALING OF A MESH MULTILAYER STRUCTURE TO DECREASE THE SPATIAL DIMENSIONS OF INTEGRATED p–n-JUNCTIONS

    https://doi.org/10.1142/S179329200900185XCited by:3 (Source: Crossref)

    It has been recently shown that inhomogeneity of a multilayer structure and optimization of annealing time give us the possibility to decrease the depth of p–n-junctions, which were produced in the structures. The additional to the considered effect is increasing of homogeneity of dopant distribution in enriched by the dopant area of p–n-junction. In the present paper analysis of dopant redistribution in a multilayer structures during production a series of p–n-junctions, which was produced in the multilayer structures, has been done. We consider an approach to increase the sharpness of both diffused-junction and implanted-junction rectifiers, which comprise in a bipolar transistor or thyristor, and increasing of homogeneity of dopants distributions in enriched by the dopants areas of p–n-junctions. The approach gives us possibility to increase the degree of integration of p–n-junctions, which was produced as elements of integrated circuits. Optimization of annealing time for simultaneously increasing of the sharpness and homogeneity has been done.