World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Mesoscopic Solar Cells; Guest Editor: Nam-Gyu Park – BRIEF REPORTSNo Access

HIGH-EFFICIENT SOLID-STATE PEROVSKITE SOLAR CELL WITHOUT LITHIUM SALT IN THE HOLE TRANSPORT MATERIAL

    https://doi.org/10.1142/S1793292014400013Cited by:36 (Source: Crossref)

    CH3NH3PbX(X = Br, I, Cl) perovskites have recently been used as light absorbers in hybrid organic–inorganic solid-state solar cells, with efficiencies above 15%. To date, it is essential to add Lithium bis(Trifluoromethanesulfonyl)Imide (LiTFSI) to the hole transport materials (HTM) to get a higher conductivity. However, the detrimental effect of high LiTFSI concentration on the charge transport, DOS in the conduction band of the TiO2 substrate and device stability results in an overall compromise for a satisfactory device. Using a higher mobility hole conductor to avoid lithium salt is an interesting alternative. Herein, we successfully made an efficient perovskite solar cell by applying a hole conductor PTAA (Poly[bis(4-phenyl) (2,4,6-trimethylphenyl)-amine]) in the absence of LiTFSI. Under AM 1.5 illumination of 100 mW/cm2, an efficiency of 10.9% was achieved, which is comparable to the efficiency of 12.3% with the addition of 1.3 mM LiTFSI. An unsealed device without Li+ shows interestingly a promising stability.