World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
BRIEF REPORTSNo Access

Study of Omnidirectional Reflection Bandgap Extension in One-Dimensional Quasi-Periodic Metallic Photonic Crystal

    https://doi.org/10.1142/S1793292015500885Cited by:4 (Source: Crossref)

    The reflection properties of light wave propagation in one-dimensional quasi-periodic metallic photonic crystal (PC) are comprehensively analyzed by transfer matrix method. In this work, we form a Fibonacci sequence quasi-periodic PC composed of metal and dielectric. The results demonstrate that the reflection stop band is strongly dependent on the periodic structure, metal thickness and incident angle. For this structure, the reflection stop band ranges from the visible light region to near-infrared region. Compared with the periodic metallic PC, the reflection stop bandwidth of our structure is wider. When the metal thickness increases, the reflection stop band is significantly enlarged. Furthermore, the reflection stop bandwidth slowly gets narrow and shifts to short wavelength region with the increase of incidence angle. Considering TE and TM wave at all incident angles, there is an omnidirectional reflection bandgap with width of 241nm for our investigated quasi-periodic metal PC.