Highly Ordered Mesoporous Antimony-Doped SnO2 Materials for Lithium-ion Battery
Abstract
Highly ordered mesoporous antimony-doped tin oxide (ATO) materials, containing different amount of antimony in the range of 0–50mol%, are prepared via a nanoreplication method using a mesoporous silica template. The mesoporous ATO materials thus obtained exhibit high electrical conductivity, high reversible capacity, superior cycle stability and good rate capability as anode materials for lithium-ion batteries, compared to those of pure mesoporous tin oxide. Amongst the ATO materials in this work, the mesoporous ATO material with 10mol% of antimony has highest discharge capacity of 1940mAhg-1 (charge capacity of 1049) at the 1st cycle, best cycle performance (716mAhg-1 at 100th cycle) and excellent rate capability, which are probably due to the enhanced electrical conductivity as well as reduced crystalline size.
