World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
BRIEF REPORTSNo Access

Bimetallic PtRu Nanoparticles Supported on Functionalized Multiwall Carbon Nanotubes as High Performance Electrocatalyst for Direct Methanol Fuel Cells

    https://doi.org/10.1142/S1793292016500223Cited by:7 (Source: Crossref)

    PtRu nanoparticles (NPs) supported on acid treated multiwall carbon nanotubes (Pt1Ru1/MWCNTs) were prepared by a modified polyol method without adding any other surfactant or protective agent. The structural and compositional properties of the as-obtained samples were characterized by transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and X-ray photoelectron (XPS) spectroscopy. The electrocatalytic performance of the catalyst was evaluated by cyclic voltammetry (CV), CO stripping voltammetry and chronoamperometry, indicating a high catalytic activity, excellent CO tolerance and stability for methanol oxidation. Interestingly, a series of accurate controllable experiments have been designed to explore the enhancement mechanism of Pt1Ru1/MWCNTs for methanol oxidation reaction. Most importantly, Pt1Ru1/MWCNTs composites were used as an anode catalyst in the direct methanol fuel cells (DMFCs) exhibiting outstanding power density (126.1 mW/cm2) 1.7 times higher than that of the commercial catalyst of Pt1Ru1/C (74.1 mW/cm2) (E-TEK).