World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
BRIEF REPORTSNo Access

Synthesis and Excellent Microwave Absorption Properties of ZnO/Fe3O4/MWCNTs Composites

    https://doi.org/10.1142/S1793292016501393Cited by:21 (Source: Crossref)

    ZnO nanocrystals were introduced into Fe3O4/MWCNTs composites to improve the impedance matching and electromagnetic (EM) wave attenuation of the system. The as-synthesized ZnO/Fe3O4/MWCNTs composites were characterized by X-ray diffraction, vibrating sample magnetometer, field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy. SEM and TEM images showed that Fe3O4 microspheres 100–200nm in size connected MWCNTs. Analysis of EM parameters revealed that the impedance matching of the ZnO/Fe3O4/MWCNTs composites was considerably improved after ZnO nanocrystals were introduced. The ZnO/Fe3O4/MWCNTs composites exhibited a highly efficient microwave absorption (MA) capacity within the tested frequency range of 2–18GHz. The optimal reflection loss of EM waves was 38.2dB at 6.08GHz with an absorber thickness of 3.5mm. The excellent MA properties of the composites could be attributed to the improved impedance matching, interfacial polarization, and combined effects of dielectric and magnetic losses.