World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Synthesis of LaMnO3–Diamond Composites and Their Photocatalytic Activity in the Degradation of Weak Acid Red C-3GN

    https://doi.org/10.1142/S1793292018501217Cited by:5 (Source: Crossref)

    In this study, a series of LaMnO3–diamond composites with varied LaMnO3 mass contents supported on micro-diamond have been synthesized using a sol–gel method. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and the Fourier transform infrared spectra (FTIR). Meanwhile, the photocatalytic performances were also tested by photoluminescence (PL) spectroscopy, ultraviolet–visible diffuse reflection spectra (UV-Vis DRS) and the degradation of weak acid red C-3GN (RC-3GN). Results show that the peak position of LaMnO3 is shifted to low angle after the introduction of diamond, and perovskite particles uniformly distributed on the surface of diamond, forming a network structure, which can increase the active sites and the absorption of dye molecules. When the mass ratio of LaMnO3 and diamond is 1:2 (LMO–Dia-2), the composite shows the most excellent photocatalytic activity. This result offers a sample route to enlarge the range of the application of micro-diamond and provide a new carrier for perovskite photocatalysts.