World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Three-Dimensional ZnO/CdS/NiFe Layered Double Hydroxide Photoanode Coupled with a Cu2O Photocathode in a Tandem Cell for Overall Solar Water Splitting

    https://doi.org/10.1142/S1793292019501467Cited by:4 (Source: Crossref)

    An integrated tandem photoelectrochemical (PEC) cell, composed of a three-dimensional (3D) ZnO/CdS/NiFe layered double hydroxide (LDH) core/shell/hierarchical nanowire arrays (NWAs) photoanode and a p-Cu2O photocathode, was designed for unassisted overall solar water splitting in this study. The optical and photoelectrochemical characteristics of ZnO-based photoanodes and Cu2O photocathode were investigated. The results show that ZnO/CdS/NiFe LDH nanostructures offer significantly enhanced performances with a photocurrent density reaching 5.8mAcm2 at 0.9V and an onset potential as early as 0.1V (versus RHE). The enhancement can be attributed to the existence of CdS nanoparticles (NPs) which boosts the light absorption in visible region and enhances charge separation. Moreover, the introduction of NiFe LDH nanoplates, with unique hierarchical mesoporous architecture, promotes electrochemical reactions by providing more active sites as co-catalyst. On the above basis, the ZnO/CdS/NiFe LDH–Cu2O two-electrode tandem cell system was established. At zero bias, the device shows a photocurrent density of 0.4mAcm2 along with the corresponding solar-to-hydrogen (STH) conversion efficiency reaching 0.50%. Our results indicate that the tandem PEC cells consisting of metal–oxide–semiconductor photoelectrodes based on Earth-abundant and low-cost materials hold promising application potential for overall solar water splitting.