World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Biomass-Based Synthesis of Green and Biodegradable Molecularly Imprinted Membranes for Selective Recognition and Separation of Tetracycline

    https://doi.org/10.1142/S1793292020500046Cited by:11 (Source: Crossref)

    Aggravating environmental problems have driven the unprecedented development of sustainable materials. Treatments of environmental pollutants with biomass-based sustainable materials are catching attention of more researchers. In the present work, a biomass-based strategy was developed to prepare sustainable molecularly imprinted nanocomposite membranes (S-MINMs). Based on this strategy, biomass-activated carbon nanoparticles (ACNPs) as the porous filler were integrated into the porous cellulose acetate (CA)/chitosan (CS) hybrid membranes to synthesize renewable and easy degradable basal membranes. The specific recognition sites were fabricated from simple free radical polymerization method, and using methacrylic acid (MAA) and acrylamide (Am) as functional monomers, we obtain improved adsorption capacity on tetracycline (TC, template molecule). Performance of S-MINMs was evaluated by adsorption isotherm, adsorption kinetics, perm-selectivity, reusability and biodegradability. Results indicated that the as-prepared S-MINMs not only exhibited desirable biodegradability, but also possess superior adsorption and separation performance toward TC (15.99mg g1 for adsorption capacity and 4.91 for perms-selectivity factor). The method developed here shows great potential for development of sustainable membranes for selective separation of various pollutants.