World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Synergistic Antimicrobial Mechanism of GO: Why Oxidative Stress Can Inactivate E. coli

    https://doi.org/10.1142/S179329202050054XCited by:5 (Source: Crossref)

    Graphene oxide (GO), a 2D nanomaterial, is a promising material for medical application, thanks to its water solubility, antibacterial activity and relatively low cytotoxicity. However, many factors, such as lateral dimension, purity and surface chemistry, may influence its antibacterial activity, its exact mechanism is still unknown. In this work, E. coli was used as model bacterium to determine the antibacterial activity of well-dispersed GO which was obtained by a modified Hummer method and dialyzed to remove the salts and acid used in the oxidation process. After co-culture with GO for 2h, up to 90% E. coli cells were inactivated when GO concentration at 8μg/mL. The direct interaction was not detected in FE-SEM images and the results of ζ potential showed that the interaction between GO and E. coli are repulsive. Our results showed that GO can produce ROS and inactivate SOD and CAT enzymes in low concentration after co-cultured with E. coli which explained the antibacterial activity of GO in aqueous solution. Meanwhile, GO, with high purity, showed low cytotoxicity towards mammalian cells and did not cause any observable hemoglobin after co-cultured with blood cells. The data presented here prove that GO is effectively inhibit E. coli through inactivating SOD, CAT enzymes and the oxidative stress produced by ROS. Furthermore, the good biocompatibility promised its future application.