Fabrication of Biomass-Derived N, S Co-doped Carbon with Hierarchically Porous Architecture for High Performance Supercapacitor
Abstract
Multi-element doped porous carbon materials are considered as one of the most promising electrode materials for supercapacitors due to their large specific surface area, abundant mesoporous structure, heteroatom doping and good conductivity. Herein, we propose a very simple and effective strategy to prepare nitrogen, sulfur co-doped hierarchical porous carbons (N-S-HPC) by one-step pyrolysis strategy. The effect of sole dopants as a precursor was a major factor in the transformation process. The optimized N-S-HPC-2 possesses a typical hierarchically porous framework (micropores, mesopores and macropores) with a large specific surface area (1284.87m2 g−1) and N (4.63 atomic %), S (0.53 atomic %) doping. As a result, the N-S-HPC-2 exhibits excellent charge storage capacity with a high gravimetric capacitance of 360F g−1 (1 A g−1) in three-electrode systems and 178F g−1 in two-electrode system and long-term cycling life with 87% retention after 10,000 cycles in KOH electrolyte.
