World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Au NPs Loaded Al-MOF@PPy as Excellent Catalyst for the Removal of Organic Pollutants from Water

    https://doi.org/10.1142/S1793292021500028Cited by:10 (Source: Crossref)

    The novel Al-MOF@PPy@Au nanocomposites were synthesized by an in-situ growth method. The prepared Al-MOF@PPy@Au nanocomposites were characterized by Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectrometer (FTIR), X-ray powder diffraction (XRD), Inductively Coupled Plasma (ICP) and X-ray photoelectron spectroscopy (XPS). The catalytic properties of the prepared Al-MOF@PPy@Au nanocomposites with different content of Au were investigated. The results illustrated that the Al-MOF@PPy@Au(G) with 27.80 wt.% (w/w) Au obtained good catalytic performance. P-nitrophenol (4-NP), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB) were used to test the catalytic degradation of Al-MOF@PPy@Au(G) nanocomposites. The degradation efficiency of the Al-MOF@PPy@Au(G) nanocomposites for 4-NP, MO, MB and RhB reached 92.12%, 93.84%, 93.19% and 92.44% within 25 min, 7 min, 16 min and 2 min, respectively. The Al-MOF@PPy@Au(G) nanocomposites still have good degradation efficiency and good stability for 4-NP within one month being in water. The Al-MOF@PPy@Au(G) nanocomposites can be applied to the real water solution without causing the change of the degradation efficiency.