Design and Process Optimization of a New Reaction Cavity for High-Temperature MOCVD AlGaN Growth
Abstract
AlGaN offers new opportunities for the development of the solid-state ultraviolet (UV) luminescence, detectors and high-power electronic devices, however, problems such as low growth rate and poor crystallization quality are common in the growing process of AlGaN material. In this paper, a new reaction cavity for high-temperature MOCVD AlGaN growth was carried out through the research of resistance heated, and the thermal field of high-temperature MOCVD growth was numerically simulated. Based on the high-temperature MOCVD reaction cavity, an orthogonal experimental method was used to simulate the process parameters, and the range, variance and matrix analysis were conducted on the calculation results. The finite element analysis was conducted on the temperature field, pressure field, velocity field, and the high-temperature MOCVD AlGaN growth model was established.
