World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Efficient Detection of Biomarker of Radiation-Resistant Nasopharyngeal Carcinoma by Anchor Nucleic Acid Structure and DNase I Amplification

    https://doi.org/10.1142/S1793292023500133Cited by:0 (Source: Crossref)

    Radiotherapy is a simple and effective method for the treatment of rhinitis cancer, but some patients are resistant to radiotherapy and affect the curative effect. Previous studies have confirmed that miR-205 can be used as a biomarker for the feasibility of radiotherapy in nasopharyngeal carcinoma (NPC). In this study, a biosensor for the detection of miR-205 was constructed by using graphene oxide (GO) and fluorescent DNA probes, and using DNase I to generate fluorescent signals for cyclic amplification. The results showed that the lowest detection limit of this sensor for detecting miR-205 was 475 pM, which was 4.86 times lower or 4.86 times better than that of conventional methods without amplification, and showed better detection specificity. It is expected to provide a convenient and effective tool for studying the radio resistance mechanism of NPC and for personalized therapy for NPC patients.