World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Using Semantically-Extended LDA Topic Model for Semantic Tagging

    https://doi.org/10.1142/S1793351X16400183Cited by:0 (Source: Crossref)

    The volume of documents and online resources has been increasing significantly on the Web for many years. Effectively, organizing this huge amount of information has become a challenging problem. Tagging is a mechanism to aggregate information and a great step towards the Semantic Web vision. Tagging aims to organize, summarize, share and search the Web resources in an effective way. One important problem facing tagging systems is to automatically determine the most appropriate tags for Web documents. In this paper, we propose a probabilistic topic model that incorporates DBpedia knowledge into the topic model for tagging Web pages and online documents with topics discovered in them. Our method is based on integration of the DBpedia hierarchical category network with statistical topic models, where DBpedia categories are considered as topics. We have conducted extensive experiments on two different datasets to demonstrate the effectiveness of our method.

    Remember to check out the Most Cited Articles!

    Check out our titles in Semantic Computing!