World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Cultural Algorithms as a Framework for the Design of Trustable Evolutionary Algorithms

    https://doi.org/10.1142/S1793351X22400062Cited by:0 (Source: Crossref)
    This article is part of the issue:

    One of the major challenges facing Artificial Intelligence in the future is the design of trustworthy algorithms. The development of trustworthy algorithms will be a key challenge in Artificial Intelligence for years to come. Cultural Algorithms (CAs) are viewed as one framework that can be employed to produce a trustable evolutionary algorithm. They contain features to support both sustainable and explainable computation that satisfy requirements for trustworthy algorithms proposed by Cox [Nine experts on the single biggest obstacle facing AI and algorithms in the next five years, Emerging Tech Brew, January 22, 2021]. Here, two different configurations of CAs are described and compared in terms of their ability to support sustainable solutions over the complete range of dynamic environments, from static to linear to nonlinear and finally chaotic. The Wisdom of the Crowds method was selected for the one configuration since it has been observed to work in both simple and complex environments and requires little long-term memory. The Common Value Auction (CVA) configuration was selected to represent those mechanisms that were more data centric and required more long-term memory content.

    Both approaches were found to provide sustainable performance across all the dynamic environments tested from static to chaotic. Based upon the information collected in the Belief Space, they produced this behavior in different ways. First, the topologies that they employed differed in terms of the “in degree” for different complexities. The CVA approach tended to favor reduced “indegree/outdegree”, while the WM exhibited a higher indegree/outdegree in the best topology for a given environment. These differences reflected the fact the CVA had more information available for the agents about the network in the Belief Space, whereas the agents in the WM had access to less available knowledge. It therefore needed to spread the knowledge that it currently had more widely throughout the population.