World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Artificial Intelligence and Knowledge Engineering; Guest Editor: Ajay BansalNo Access

Feature Fusion and Augmentation Based on Manifold Ranking for Image Classification

    https://doi.org/10.1142/S1793351X24440033Cited by:0 (Source: Crossref)

    Despite the great advances in the field of image classification, the association of ideal approaches that can bring improved results, considering different datasets, is still an open challenge. In this work, a novel approach is presented, based on a combination of compared strategies: feature extraction for early fusion; rankings based on manifold learning for late fusion; and feature augmentation applied in a long short-term memory (LSTM) algorithm. The proposed method aims to investigate the effect of feature fusion (early fusion) and ranking fusion (late fusion) in the final results of image classification. The experimental results showed that the proposed strategies improved the accuracy of results in different tested datasets (such as CIFAR10, Stanford Dogs, Linnaeus 5, Flowers 102, and Flowers 17) using a fusion of features from three convolutional neural networks (CNNs) (ResNet152, VGG16, and DPN92) and its respective generated rankings. The results indicated significant improvements and showed the potential of the approach proposed for image classification.