World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Selected Papers from the 2007 Workshop on Earthquakes and TsunamisNo Access

STRUCTURAL DAMAGE QUANTIFICATION BY SYSTEM IDENTIFICATION

    https://doi.org/10.1142/S1793431107000134Cited by:8 (Source: Crossref)

    After a disaster such as an earthquake has struck, the damage assessment of the affected buildings, bridges and other forms of structures is often urgently required for follow-up action. Research in using system identification for damage assessment in a quantifiable and non-destructive way has rapidly increased in recent years, due to advances in computing power and sensing technology. Though considerable progress has been made, many challenges still remain in achieving robust and effective identification of large structural systems using incomplete and noisy measurement signals. In this paper a novel strategy to tackle this problem is presented. A modified genetic algorithm (GA) strategy incorporating a search space reduction method, progressively and adaptively reduces the search space for each unknown parameter. By concurrent evolution of multiple species, it provides an excellent balance between exploration of the search space and exploitation of good solutions. The modified GA is incorporated into a damage detection strategy that works by comparing identified parameters for the undamaged and damaged structures and quantifies damage as a relative change in the stiffness of a member or a group of members. The additional information obtained from the analysis of the undamaged structure is used to greatly improve speed and accuracy in the identification of the damaged structure. Numerical studies on 10 and 20 degree-of-freedom (DOF) systems and an experimental study of a 7-storey small-scale steel frame are presented to illustrate the applicability of the method in accurately identifying even small amounts of damage.