World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S1793524516500650Cited by:7 (Source: Crossref)

Infection of human immunodeficiency virus (HIV) is determined through the decay of healthy CD4+ T-cells in a well-mixed compartment, such as a bloodstream. A mathematical model is considered to illustrate the effects of combined drug therapy, i.e. reverse transcription plus protease inhibitor, on viral growth and T-cell population dynamics. This model is used to explain the existence and stability of infected and uninfected steady states in HIV growth. An analytical technique, called variational iteration method (VIM), is used to solve the mathematical model. This method is modified to obtain the rapidly convergent successive approximations of the exact solution. These approximations are obtained without any restrictions or the transformations that may change the physical behavior of the problem. Numerical simulations are computed and exhibited to illustrate the effects of proposed drug therapy on the growth or decay of infection.

AMSC: 92D25, 92B05, 34D20, 34D23, 37MXX

Remember to check out the Most Cited Articles in IJB!
Check out new Biomathematics books in our Mathematics 2018 catalogue!
Featuring author Frederic Y M Wan and more!