World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Harvest control for a delayed stage-structured diffusive predator–prey model

    https://doi.org/10.1142/S1793524517500048Cited by:7 (Source: Crossref)

    In this paper, we have considered a delayed stage-structured diffusive prey–predator model, in which predator is assumed to undergo exploitation. By using the theory of partial functional differential equations, the local stability of an interior equilibrium is established and the existence of Hopf bifurcations at the interior equilibrium is also discussed. By applying the normal form and the center manifold theory, an explicit algorithm to determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived. Finally, the complex dynamics are obtained and numerical simulations substantiate the analytical results.

    AMSC: 92D25, 70K50, 35B35

    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!