World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Global threshold dynamics of SIQS epidemic model in time fluctuating environment

    https://doi.org/10.1142/S1793524517500607Cited by:1 (Source: Crossref)

    The paper characterizes the global threshold dynamics of an epidemic model of SIQS type in environments with fluctuations, where the quarantine class is explicitly involved. Criteria are established for the permanence and extinction of the infective in environments with time oscillations. In particular, we further consider an environment which varies periodically in time. The global threshold dynamic scenarios i.e. the existence and global asymptotic stability of the disease-free periodic solution, the existence of the endemic periodic solution and the permanence of the infective are completely characterized by the basic reproduction number defined by the spectral radius of an associated linear integral operator.

    AMSC: 92D30, 34C25, 34D23

    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!