Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Optimal treatment strategy of an avian influenza model with latency

    https://doi.org/10.1142/S1793524517500668Cited by:2 (Source: Crossref)

    Avian influenza, caused by influenza A viruses, has received worldwide attention over recent years. In this study, we formulate a mathematical model for avian influenza that includes human–human transmission and incorporates the effects of infection latency and treatments. We investigate the essential dynamics of the model through an equilibrium analysis. Meanwhile, we explore effective treatment strategies to control avian influenza outbreaks using optimal control theory. Our results show that strategically deployed medical treatments can significantly reduce the numbers of exposed and infection persons.

    AMSC: 92B05

    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!