World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Mathematical and computational analysis of CRISPR Cas9 sgRNA off-target homologies

    https://doi.org/10.1142/S1793524517500851Cited by:1 (Source: Crossref)

    Revolutionary in scope and application, the CRISPR Cas9 endonuclease system can be guided by 20-nt single guide RNA (sgRNA) to any complementary loci on the double-stranded DNA. Once the target site is located, Cas9 can then cleave the DNA and introduce mutations. Despite the power of this system, sgRNA is highly susceptible to off-target homologous attachment and can consequently cause Cas9 to cleave DNA at off-target sites. In order to better understand this flaw in the system, the human genome and Streptococcus pyogenes Cas9 (SpCas9) were used in a mathematical and computational study to analyze the probabilities of potential sgRNA off-target homologies. It has been concluded that off-target sites are nearly unavoidable for large-size genomes, such as the human genome. Backed by mathematical analysis, a viable solution is the double-nicking method which has the promise for genome editing specificity. Also applied in this study was a computational algorithm for off-target homology search that was implemented in Java to confirm the mathematical analysis.

    AMSC: 92B05

    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!