Global dynamics of deterministic and stochastic epidemic systems with nonmonotone incidence rate
Abstract
This paper is devoted to studying the dynamics of a susceptible-infective-latent-infective (SILI) epidemic model that is subject to the combined effects of environmental noise and intervention strategy. We extend the classical SILI epidemic model from a deterministic framework to a stochastic one. For the deterministic case, the global stability analysis of the solution is carried out in terms of the basic reproduction number. For the stochastic case, sufficient conditions for the extinction of diseases are obtained. Then, the existence of stationary distribution and asymptotic behavior of the solution are further studied to illustrate the cycling phenomena of recurrent diseases. Numerical simulations are conducted to verify these analytical results. It is shown that both stochastic noise and intervention strategy contribute to the control of diseases.
Remember to check out the Most Cited Articles in IJB!
Featuring author Frederic Y M Wan and more!