Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Theoretical assessment of the impact of environmental contamination on the dynamical transmission of polio

    https://doi.org/10.1142/S1793524519500128Cited by:3 (Source: Crossref)

    A mathematical model for the dynamical transmission of polio is considered, with the aim of investigating the impact of environment contamination. The model captures two infection pathways through both direct human-to-human transmission and indirect human-to-environment-to-human transmission by incorporating the environment as a transition and/or reservoir of viruses. We derive the basic reproduction number env0. We show that the disease free equilibrium is globally asymptotically stable (GAS) if env0<1, while if env0>1, there exists a unique endemic equilibrium which is locally asymptotically stable (LAS). Similar results hold for environmental contamination free sub-model (without the incorporation of the indirect transmission). At the endemic level, we show that the number of infected individuals for the model with the environmental-related contagion is greater than the corresponding number for the environmental contamination free sub-model. In conjunction with the inequality 0<env0, where 0 is the basic reproduction number for the environmental contamination free sub-model, our finding suggests that the contaminated environment plays a detrimental role on the transmission dynamics of polio disease by increasing the endemic level and the severity of the outbreak. Therefore, it is natural to implement control strategies to reduce the severity of the disease by providing adequate hygienic living conditions, educate populations at risk to follow rigorously those basic hygienic rules in order to avoid adequate contacts with suspected contaminated objects. Further, we perform numerical simulations to support the theory.

    AMSC: 34A34, 34D23, 34D40, 92D30

    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!