World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NONLINEAR PLANE-WAVE ALGORITHM FOR DIFFRACTIVE PROPAGATION INVOLVING SHOCKWAVES

    https://doi.org/10.1142/S0218396X93000202Cited by:14 (Source: Crossref)

    A new algorithm for nonlinear plane-wave propagation is presented. The algorithm uses a novel time domain representation to account for nonlinearity, while accounting for absorption in the frequency domain. The new algorithm allows for accurate representations of diffractive shockwave propagation in the framework of an existing nonlinear beam propagation model using far fewer harmonics (and thus time) than alternative algorithms based on a frequency domain solution to Burgers' equation. The new algorithm is tested against the frequency domain solution to Burgers' equation in a variety of cases and then used to model a focused ultrasonic piston transducer operating at very high source intensities.