World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Dynamic analysis of a delayed pest-natural enemy model: Triple effects of non-monotonic functional response, additional food supply and habitat complexity

    https://doi.org/10.1142/S1793524524500621Cited by:5 (Source: Crossref)

    Considering the food diversity of natural enemy species and the habitat complexity of prey populations, a pest-natural enemy model with non-monotonic functional response is proposed for biological management of Bemisia tabaci. The dynamic characteristics of the proposed model are analyzed. In addition, considering that the conversion from prey to predator has a certain time lag rather than instantaneous, a time delay is introduced into this model, and it is shown that the Hopf bifurcation occurs at the interior equilibrium when the time delay is used as the bifurcation parameter. Furthermore, the values of the parameters that determine the direction of the Hopf bifurcation as well as the stability of the periodic solution are calculated. In order to illustrate the theoretical analysis results, numerical simulations and validation are carried out to demonstrate the effects of non-monotonic functional response, additional food supply and habitat complexity.

    Communicated by Shujing Gao


    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!