World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Homologically visible closed geodesics on complete surfaces

    https://doi.org/10.1142/S1793525321500692Cited by:0 (Source: Crossref)

    In this paper, we give multiple situations when having one or two geometrically distinct closed geodesics on a complete Riemannian cylinder, a complete Möbius band or a complete Riemannian plane leads to having infinitely many geometrically distinct closed geodesics. In particular, we prove that any complete cylinder with isolated closed geodesics has zero, one or infinitely many homologically visible closed geodesics; this answers a question of Alberto Abbondandolo.

    AMSC: 53C22, 58E10