World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model

    https://doi.org/10.1142/S0219467825500536Cited by:2 (Source: Crossref)

    Behavioral monitoring can be used to monitor aquatic ecosystems and water quality over time. Using precise and rapid fish performance detection, fishermen may make educated management decisions on recirculating aquaculture systems while decreasing labor. Sensors and procedures for recognizing fish behavior are often developed and prepared by researchers in big numbers. Deep learning (DL) techniques have revolutionized the capability to automatically analyze videos, which were utilized for behavior analysis, live fish detection, biomass estimation, water quality monitoring, and species classification. The benefit of DL is that it could automatically study the extraction of image features and reveals brilliant performance in identifying sequential actions. This paper focuses on the design of Dwarf Mongoose Optimization with Transfer Learning-based fish behavior classification (DMOTLB-FBC) model. The presented DMOTLB-FBC technique intends to effectively monitor and classify fish behaviors. Initially, the DMOTLB-FBC technique follows Gaussian filtering (GFI) technique for noise removal process. Besides, a transfer learning (TL)-based neural architectural search network (NASNet) model is used to produce a collection of feature vectors. For fish behavior classification, graph convolution network (GCN) model is employed in this work. To improve the fish behavior classification results of the DMOTLB-FBC technique, the DWO algorithm is applied as a hyperparameter optimizer of the GCN model. The experimentation analysis of the DMOTLB-FBC technique is tested on fish video dataset and the widespread comparison study reported the enhancements of the DMOTLB-FBC technique over other recent approaches.

    Remember to check out the Check out our Most Cited Articles!

    Check out these titles on Image Analysis