World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Partial clones

    https://doi.org/10.1142/S1793557120501612Cited by:3 (Source: Crossref)

    A set C of operations defined on a nonempty set A is said to be a clone if C is closed under composition of operations and contains all projection mappings. The concept of a clone belongs to the algebraic main concepts and has important applications in Computer Science. A clone can also be regarded as a many-sorted algebra where the sorts are the n-ary operations defined on set A for all natural numbers n1 and the operations are the so-called superposition operations Smn for natural numbers m,n1 and the projection operations as nullary operations. Clones generalize monoids of transformations defined on set A and satisfy three clone axioms. The most important axiom is the superassociative law, a generalization of the associative law. If the superposition operations are partial, i.e. not everywhere defined, instead of the many-sorted clone algebra, one obtains partial many-sorted algebras, the partial clones. Linear terms, linear tree languages or linear formulas form partial clones. In this paper, we give a survey on partial clones and their properties.

    Communicated by J. Koppitz

    AMSC: 03B15, 08A30