World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

POLY(3,4-ETHYLENEDIOXYTHIOPHENE)/MnO2 MESOPOROUS NANOCOMPOSITE WITH EXCELLENT HIGH-RATE ELECTROCHEMICAL PROPERTIES

    https://doi.org/10.1142/S1793604711001622Cited by:7 (Source: Crossref)

    Herein, a modified interfacial synthetic route has been demonstrated by synthesizing uniform poly(3,4-ethylenedioxythiophene)/MnO2 hierarchical mesoporous nanocomposite. The in-situ generated polymer has been proven to be effective in constraining the overgrowth of nuclei. Consequently, assembled nanosheets with a thickness less than 5 nm have been prepared. At a high rate of 10 A g-1 charge/discharge process, the nanocomposite electrode retains 73.4% of the specific capacitance exhibited at 1 A g-1. At a current density as large as 800 mA g-1, the nanocomposite electrode attains reversible lithium storage specific capacities of 400 mAh g-1 after 50 cycles and 300 mAh g-1 after 100 cycles. The excellent high-rate performance of the nanocomposite electrode is highlighted in terms of its extremely large surface area, unique microstructure and mesoporous features.