World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Preparation of lignite-based activated carbon with high specific capacitance for electrochemical capacitors

    https://doi.org/10.1142/S1793604715500319Cited by:10 (Source: Crossref)

    A lignite-based activated carbon (LAC) for electrochemical capacitors (ECs) was prepared from high moisture lignite by KOH activation, and the as-prepared sample was characterized by the N2-sorption, scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performances of ECs with activated carbon as electrodes in 3 M KOH aqueous solution were evaluated by constant current charge-discharge and cyclic voltammetry. The LAC exhibits a well-developed surface area of 2581 m2/g, a relative wide pore size distribution of 0.5–10 nm. The ECs with LAC as electrode materials presents a high specific capacitance of 392 F/g at a low current density of 50 mA/g, and still remains 315 F/g even at a high current density of 5 A/g. The residual specific capacitance is as high as 92.9% after 2000 cycles. Compared with the commercial activated carbon (Maxsorb: Commercial product, Kansai, Japan), the LAC based electrode materials shows superior capacitive performance in terms of specific capacitance and charge–discharge performance at the high current density.