World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits

    https://doi.org/10.1142/S1793830921500233Cited by:2 (Source: Crossref)

    We study the transition graph of generic Hamiltonian surface flows, whose vertices are the topological equivalence classes of generic Hamiltonian surface flows and whose edges are the generic transitions. Using the transition graph, we can describe time evaluations of generic Hamiltonian surface flows (e.g., fluid phenomena) as walks on the graph. We propose a method for constructing the complete transition graph of all generic Hamiltonian flows. In fact, we construct two complete transition graphs of Hamiltonian surface flows having three and four genus elements. Moreover, we demonstrate that a lower bound on the transition distance between two Hamiltonian surface flows with any number of genus elements can be calculated by solving an integer programming problem using vector representations of Hamiltonian surface flows.

    AMSC: 90C35, 37E35, 76B47
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!