World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANALYTICAL SOLUTION OF WEDGE WATER ENTRY BY USING SCHWARTZ–CHRISTOFFEL CONFORMAL MAPPING

    https://doi.org/10.1142/S1793962311000487Cited by:20 (Source: Crossref)

    Water impact is one of the most critical phenomena from the viewpoint of the structural design of ships and offshore structures. The impact force can impose a large load with high local pressure on the body surface. On the other hand, determination of the maximum impact force during impact and acting point itself is very important in the design of floats.

    In this paper, the water entry of a two-dimensional wedge section is considered. This study is carried out in the framework of a potential-flow assumption. In particular, water impact on a dropping wedge with a constant velocity is pursued analytically by using the Schwartz–Christoffel conformal mapping. In order to determine a position of the wedge where the instantaneous effective force is largest during the impact, a particular equation is introduced here for the first time. The pressure distribution and maximum impact force are also calculated. The obtained results are compared against other numerical and experimental works and favorable agreement is displayed.