World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HIGH ORDER ACCURATE QUINTIC NONPOLYNOMIAL SPLINE FINITE DIFFERENCE APPROXIMATIONS FOR THE NUMERICAL SOLUTION OF NON-LINEAR TWO POINT BOUNDARY VALUE PROBLEMS

    https://doi.org/10.1142/S1793962313500189Cited by:3 (Source: Crossref)

    We develop a new sixth-order accurate numerical scheme for the solution of two point boundary value problems. The scheme uses nonpolynomial spline basis and high order finite difference approximations. With the help of spline functions, we derive consistency conditions and it is used to derive high order discretizations of the first derivative. The resulting difference schemes are solved by the standard Newton's method and have very small computing time. The new method is analyzed for its convergence and the efficiency of the proposed scheme is illustrated by convection-diffusion problem and nonlinear Lotka–Volterra equation. The order of convergence and maximum absolute errors are computed to present the utility of the new scheme.

    AMSC: 65L10, 65L12