World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Compact splitting symplectic scheme for the fourth-order dispersive Schrödinger equation with Cubic-Quintic nonlinear term

    https://doi.org/10.1142/S1793962319500077Cited by:1 (Source: Crossref)
    This article is part of the issue:

    Combining symplectic algorithm, splitting technique and compact method, a compact splitting symplectic scheme is proposed to solve the fourth-order dispersive Schrödinger equation with cubic-quintic nonlinear term. The scheme has fourth-order accuracy in space and second-order accuracy in time. The discrete charge conservation law and stability of the scheme are analyzed. Numerical examples are given to confirm the theoretical results.