Path planning and real-time optimization of robotic arm 3D printing
Abstract
In the era of Industry 4.0, 3D printing has shown significant outcomes. To address the challenges of large-format complex material printing and forming, such as spatial constraints and excessive support structures in traditional 3D printing, the integration of industrial robots with 3D printing technology is proposed. However, robotic 3D printing introduces challenges in path planning and real-time optimization. This paper presents a methodology for path planning and real-time optimization of robotic arms on a 3D printing platform. The approach involves adjusting the printing path by modifying the nozzle printing posture and implementing obstacle avoidance algorithms. The study uses geometric and algebraic methods to optimize the robotic arm trajectory to improve the precision of reaching print points, reduce the printing cycle, and minimize material wastage. To verify the feasibility of this method, a case study in 3D printing is conducted to examine the practical application of motion planning for robotic arms based on digital twin technology.